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Abstract. Conformally compactified (3+1)-dimensional Minkowski spacetime
may be identified with the projective light cone in (4+ 2)-dimensional space-
time. In the latter spacetime the special conformal group acts via rotations
and boosts, and conformal inversion acts via reflection in a single coordinate.
Hexaspherical coordinates facilitate dimensional reduction of Maxwell elec-
tromagnetic field strength tensors to (3+1) from (4+2) dimensions. Here we
focus on the operation of conformal inversion in different coordinatizations,
and write some useful equations. We then write a conformal invariant and a
pseudo-invariant in terms of field strengths; the pseudo-invariant in (4 + 2)
dimensions takes a new form. Our results advance the study of general non-
linear conformal-invariant electrodynamics based on nonlinear constitutive
equations.
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1. Introduction

Maxwell’s equations in (3+1)-dimensional spacetime M (4) (Minkowski space) are
not only Poincaré invariant but conformally invariant. But the physical conse-
quences of this symmetry, if any, remain somewhat unclear.

As was observed by Dirac [1], the conformal compactification ofM (4) (which
we denote M#) can be identified with the projective light cone in a (4 + 2)-
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dimensional spacetime Y (6), in such a way that the special conformal transfor-
mations act by rotations and boosts. One may then write a version of Maxwell’s
equations in Y (6).

Introducing so-called hexaspherical coordinates in the latter space, one ob-
tains a spacetime Q(6). Using this coordinatization one seeks to recover classical
electrodynamics in M (4) through a process of “dimensional reduction,” which in-
volves restriction to the (projective) light cone and the imposition of various con-
ditions on the Maxwell fields. The result is to gain some insight into additional
fields that might, as a consequence, survive in M (4). Many details of these results
are described by Nikolov and Petrov [2]. The conventions we adopt here differ in
some ways from their development.

Our first goal in this presentation is to consider how conformal inversion acts
explicitly in various coordinate systems. This leads to a number of useful equa-
tions. Secondly, we introduce conformal invariant (or pseudoinvariant) function-
als of the electromagnetic field strength tensor in (4 + 2)-dimensional spacetime.
Our ultimate motivation, in the spirit of our earlier work [3–5], is to consider
general nonlinear conformal-invariant electrodynamics based on nonlinear consti-
tutive equations. The constitutive equations, in turn, are to be written explicitly
in (4 + 2) dimensions in terms of the conformal-invariant functionals. This allows
discussion of both Lagrangian and non-Lagrangian theories. Thus we present here
some steps in this overall program.

2. Maxwell’s equations and conformal symmetry

2.1. Conformal transformations of Minkowski space

We write x = (xμ) ∈ M (4), with μ = 0, 1, 2, 3. The metric tensor nμν is
diag [1,−1,−1,−1], so that (with the usual summation convention)

xμx
μ = nμνx

μxν = (x0)2 − (x1)2 − (x2)2 − (x3)2,

and the light cone L(4) is the submanifold xμx
μ = 0. The conformal group then

consists respectively of spacetime translations,

x′μ = xμ − bμ , (1)

spatial rotations and Lorentz boosts, e.g.,

x′ 0 = γ(x0 − βx1) , x′ 1 = γ(x1 − βx0) , −1 < β =
v

c
< 1 , γ = (1− β2)−

1
2 , (2)

and dilations,

x′μ = λxμ , λ > 0 , (3)

all of which are causal in M (4); together with inversion, which breaks causality
and acts singularly on the light cone in M (4),

x′μ =
xμ

xνxν
. (4)
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That is, conformal inversion preserves the set of light-like submanifolds (the “light
rays”), but not the causal structure. One may write,

nμνdx
′ μdx′ ν =

1

Ω(x)2
nμνdx

μdxν . (5)

Following inversion by a translation and inverting again gives us the special con-
formal transformation,

x′μ =
(xμ − bμxνx

ν)

(1− 2bνx ν + bνb νxμxμ)
. (6)

These can be continuously connected to the identity in the conformal group; thus
special conformal symmetry may be studied with (local) Lie algebraic techniques.
However, examining the conformal inversion (4) directly, the main approach taken
here, provides valuable insight into the (global) conformal symmetry.

2.2. Conformal symmetry of Maxwell’s equations

Under the transformation (4), one has the following symmetry transformations of
the electromagnetic potential and the spacetime derivatives:

A′
μ(x

′) = x2Aμ(x) − 2xμ(x
αAα(x)) , (7)

∂′μ :=
∂

∂x′μ
= x2∂μ − 2xμ(x · ∂) , (8)

where we have here used the abbreviations x2 = xμx
μ and (x · ∂) = xα∂α; with

Fμν = ∂μAν − ∂νAμ,

F ′
μν(x

′) = (x2)2Fμν(x) − 2x2xα(xμFαν(x) + xνFμα(x)) , (9)

and with � = ∂μ∂μ,

� ′ = (x2)2�− 4x2(x · ∂) . (10)

Additionally, the 4-current jμ transforms by

j ′μ(x
′) = (x2)3jμ(x) − 2(x2)2xμ(x

αjα(x)) . (11)

These transformations define a symmetry of the (linear) Maxwell equations,

�Aν − ∂ν(∂
αAα) = jν ; (12)

if A(x) and j(x) satisfy (12), then A′(x′) and j′(x′) satisfy the same equation with
� ′ and ∂′ in place of � and ∂ respectively. Combining this symmetry with that
of the Poincaré transformations and dilations, we have the symmetry with respect
to the usual conformal group.

Note that (8) and (10) can be obtained by regarding the inversion (4) as if
it were a coordinate transformation, and using the corresponding Jacobian ma-
trix. However (7), (9), and (11) are symmetry transformations of the fields, not
coordinate transformations.



236 St. Duplij, G.A. Goldin and V. Shtelen

2.3. Conformal-invariant functionals

In M (4) we have the Poincaré-invariant functionals

I1 =
1

2
Fμν(x)F

μν (x) , I2 = − c
4
Fμν(x)F̃

μν(x) , (13)

where F̃μν = 1
2 ε

μνρσFρσ , with ε the usual totally antisymmetric Levi-Civita sym-
bol. Sometimes the functional I2 is called a pseudoinvariant, because it changes
sign under spatial reflection (parity). These functionals are useful in writing gen-
eral nonlinear Poincaré-invariant Maxwell systems.

Under conformal inversion, however, I1 and I2 are not individually invariant;
rather, they transform by,

I ′1(x
′) =

1

2
F ′
μν(x

′)(F ′)μν(x′) = (x2)4I1(x) , (14)

I ′2(x
′) = − c

4
F ′
μν(x

′)(F̃ ′)
μν
(x′) = −(x2)4I2(x) . (15)

So the ratio I2/I1 is a pseudoinvariant under conformal inversion. This means,
however, that it is invariant under the special conformal transformations.

3. The compactification M# and the conformal group acting in
(4 + 2)-dimensional spacetime

3.1. Compactified Minkowski space

We can also describe Minkowski space using light cone coordinates. Choose a
particular (spatial) direction in R3. Such a direction is specified by a unit vector û,
labeled (for example) by an appropriate choice of angles in spherical coordinates. A
point x ∈ R3 is then labeled by angles and by the coordinate u, with−∞ < u <∞,
and x · x = u2.

With respect to the selected direction, introduce the coordinates

u± =
1√
2
(x0 ± u) . (16)

Then xμx
μ = 2u+u−, so under conformal inversion, with obvious notation,

u ′+ = 1/2u− , u ′ − = 1/2u+ . (17)

Now one can compactifyM (4) by formally adjoining to it the set J of the necessary
“points at infinity.” These are taken to be the images under inversion of the light
cone L(4) (defined by either u+ = 0 or u− = 0), together with the formal limit
points of L(4) itself at infinity (which form an invariant submanifold of J under
conformal inversion). Here J is the well-known “extended light cone at infinity”;
see, e.g., [6].

The resulting space M# = M (4) ∪ J has the topology of S3 × S1/Z2, and
conformal inversion acts onM# in a well-defined manner. There are many different
ways to coordinatize M# and to visualize its structure, which we do not review
here.
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3.2. The (4 + 2)-dimensional space Y (6) and its projective light cone

One now introduces the (4 + 2)-dimensional spacetime Y (6). For y ∈ R6,
write y = (ym),m = 0, 1, . . . , 5, and define the flat metric tensor ηmn =
diag[1,−1,−1,−1;−1, 1], so that (with summation convention)

ymy
m = ηmny

myn = (y0)2 − (y1)2 − (y2)2 − (y3)2 − (y4)2 + (y5)2.

The light cone L(6) is then specified by the condition ymy
m = 0, or

(y1)2 + (y2)2 + (y3)2 + (y4)2 = (y0)2 + (y5)2 . (18)

In Y (6), define projective equivalence in the usual way, (ym) ∼ (λym) for
λ ∈ R, λ 
= 0. The equivalence classes [y] are the rays in Y (6); let PY (6) denote this
space of rays. The projective light cone PL(6) is likewise the space of rays in L(6).
To specify PL(6), one may choose one point from each ray in L(6). Then, referring
back to (18), if we consider (y1)2 + (y2)2 + (y3)2 + (y4)2 = (y0)2 + (y5)2 = 1, we
have S3 × S1. But evidently we have here two points in each ray; so PL(6) can be
identified with (and has the topology of) S3 × S1/Z2.

Furthermore, PL(6) can be identified with M#. When y4 + y5 
= 0, the
corresponding element of M# belongs to M (4) (finite Minkowski space), and is
given by

xμ =
yμ

y4 + y5
, μ = 0, 1, 2, 3 , (19)

while the “light cone at infinity” corresponds to the submanifold y4 + y5 = 0 in
PL(6).

3.3. The conformal group acting in Y (6)

Conformal transformations act in Y (6) via rotations and boosts, so as to leave
PL(6) invariant. We may write this in terms of the 15 conformal group generators.
Setting Xmn = ym∂n−yn∂m (m < n), one has the 6 rotation and boost generators
Mmn = Xmn (0 ≤ m < n ≤ 3), the 4 translation generators Pm = Xm5−Xm4 (0 ≤
m ≤ 3), the dilation generatorD = −X45, and the 4 special conformal generators,
Km = −Xm5 −Xm4 (0 ≤ m ≤ 3).

But of course, from these infinitesimal transformations we can only con-
struct the special conformal transformations, which act like (proper) rotations
and boosts. Conformal inversion acts in Y (6) by reflection of the y5 axis, which
makes it easy to explore in other coordinate systems too:

y′
m

= ym(m = 0, 1, 2, 3, 4) , y′
5
= −y5 , (20)

or more succinctly, y′
m

= Km
n y

n, where Km
n = diag [1, 1, 1, 1, 1,−1].

3.4. Maxwell fields and conformal invariants in Y (6)

Now one introduces 6-component fields Am in Y (6), and writes

Fmn = ∂mAn − ∂nAm , (21)
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so that for any specific choices of k, m, and n,

∂Fmn

∂yk
+
∂Fnk

∂ym
+
∂Fkm

∂yn
= 0 . (22)

While this is not really the most general possible “electromagnetism” in (4 + 2)-
dimensional spacetime, it is the theory most commonly discussed in the linear case.
Note that for fields in the space Y (6) we are using the calligraphic font A, F , etc.

To complete Maxwell’s equations, we set

∂Gmn

∂ym
= J n , (23)

where J n is the 6-current. In the linear theory, G is proportional to F . For the
general nonlinear theory, however, conformal-invariant nonlinear constitutive equa-
tions which relate Gmn to Fmn should be written in terms of invariant functionals.
Thus the next step is to consider these functionals.

3.5. Conformal invariants for Maxwell theory in Y (6)

As we have seen, conformal invariance inM# means rotational invariance in Y (6).
Thus two rotation-invariant functionals of the field strength tensor Fmn in Y (6)

can immediately be written (with ε now the totally antisymmetric Levi-Civita
symbol with six indices):

I1 =
1

2
FmnFmn , I2 =

1

2
εmnk�rsFmnFk�Frs . (24)

The first rotation invariant functional, perhaps as expected, is analogous to the
first invariant in (13) for the (3 + 1)-dimensional case. But the second rotation
invariant functional, unlike the second one in (13), is now trilinear in the field
strengths (due to the presence of six indices rather than four).

Under conformal inversion, we also have the field transformations,

A′
m(y′) = Kn

mAn(y) , (25)

and

F ′
mn(y

′) = −Fmn(y) if m = 5 or n = 5 ,

F ′
mn(y

′) = +Fmn(y) otherwise . (26)

So I1 is invariant under conformal inversion, while I2 is here seen to be a pseu-
doinvariant.

4. Hexaspherical coordinates and conformal inversion
in the space Q(6)

4.1. Coordinate transformations

Hexaspherical coordinates, or q-coordinates, are defined conveniently for the even-
tual process of dimensional reduction. For q ∈ R6, write q = (qa), with the index
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a = 0, 1, 2, 3,+,−. Then for y ∈ Y (6) with y4 + y5 
= 0, define

qμ =
yμ

y4 + y5
(a = μ = 0, 1, 2, 3); q+ = y4 + y5; q− =

ymy
m

(y4 + y5)2
. (27)

The projective equivalence in Y (6) becomes in Q(6) simply

(q0, q1, q2, q3, q+, q−) ∼ (q0, q1, q2, q3, λq+, q−) , λ 
= 0. (28)

When we take q− to zero, we have the light cone in Q(6); when we additionally
take q+ ∼ λq+, we have the projective light cone and recover Minkowski space.

The inverse coordinate transformation, as well as some later equations, are
written more concisely if we introduce the notations

(q, q) = (q0)2 −
3∑

k=1

(qk)2 , and Q± = (q, q)± q− . (29)

Then

yμ = q+qμ (m = μ = 0, 1, 2, 3); y4 = q+
1 +Q−

2
; y5 = q+

1−Q−
2

. (30)

The Jacobian matrix for this transformation, defined by

dym =
∂ym

∂qa
dqa = Jm

a (q) dqa , (31)

is given (for rows m = μ, 4, 5; and columns a = ν,+,−) by

Jm
a (q) =

⎛⎜⎜⎝
q+δμν qμ 0

q+nνσq
σ 1 +Q−

2
−q+/2

−q+nνσqσ
1−Q−

2
q+/2

⎞⎟⎟⎠ ; (32)

where nνσ = diag [1,−1,−1,−1]. The inverse Jacobian matrix expressed in q-
coordinates, i.e., J̄a

m (q) = J−1,a
m (y (q)), is then given (for rows a = ν,+,−; and

columns m = μ, 4, 5) by

J̄a
m (q) =

⎛⎜⎜⎜⎝
1

q+
δνμ −qν/q+ −qν/q+

0 1 1
2nμσq

σ

q+
−1 +Q+

q+
1−Q+

q+

⎞⎟⎟⎟⎠ . (33)

In Q(6), the metric tensor (used to raise or lower indices) is no longer flat. In fact,

gab (q) = Jm
a (q) ηmnJ

n
b (q) =

⎛⎜⎜⎜⎝
(q+)

2
nμν 0 0

0 q−
q+

2

0
q+

2
0

⎞⎟⎟⎟⎠ , (34)
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while (with raised indices),

gab (q) =

⎛⎜⎜⎜⎜⎜⎝
1

(q+)
2 nμν 0 0

0 0
2

q+

0
2

q+
− 4q−

(q+)2

⎞⎟⎟⎟⎟⎟⎠ . (35)

We remark that the coordinate q+ appears explicitly in det [gab] = 4/(q+)10 =
(detJ̄)2, a fact that is important later.

Our next task is to express in q-coordinates the invariant functionals I1(y)
and I2(y) given by (24), for which we of course need the field strength tensors
in q-coordinates. We write the fields Aa(q) and Fab(q) in terms of Am(y) and
Fmn(y) using the above Jacobian matrices, Aa(q) = Jm

a (q(y))Am(y) and Fab(q) =
Jm
a (q(y))Fmn(y)J

n
b (q(y)). We have the corresponding inverse transformations,

Am(y) = Aa(q)J̄
a
m(q) , Fmn(y) = J̄a

m(q)Fab(q)J̄
b
n(q) . (36)

From these equations, it is not hard to demonstrate that Fab(q) = ∂aAb − ∂bAa

(where ∂a = ∂/∂qa), using the fact that ∂aJ
n
b − ∂bJ

n
a = 0.

In addition, substituting (36) into (24), one may demonstrate explicitly that
in Q(6), the invariants (24) take the form,

I1(q) =
1

2
Fab(q)F

ab(q) =
1

2
gacgbdFab(q)Fcd(q) ,

I2(q) =
1

(q+)5
εabcdegFab(q)Fcd(q)Feg(q) (37)

=
1

2
(det J̄) εabcdegFab(q)Fcd(q)Feg(q) .

Note that ε is the Levi-Civita symbol. The Levi-Civita tensor with raised in-
dices is defined generally as (1/

√
|g| )ε, where g = det[gab]. Here this becomes

(det J̄) εabcdeg.

4.2. Conformal inversion in Q(6)

The conformal inversion transformation contains most of the essential information
for a subsequent discussion of nonlinear electrodynamics. From (20), we obtain
the formula for conformal inversion in Q(6),

q′
μ
=

qμ

Q−
, q′

+
= q+Q− , q′

−
=

q−

Q 2
−
. (38)

Recalling that Q− = (q, q)− q−, we also have

Q′
− =

1

Q−
. (39)

The remaining steps are to express the fields A′(q′) and F ′(q′), transformed
under conformal inversion, in terms of A(q) and F (q) respectively, and then to
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explore the dimensional reduction to Minkowski space with attention to the in-
variants (37). To do this, we use the conformal inversion of the fields in Y (6)

given by (25) and (26), together with the above Jacobian matrices; for example,
A′

a(q
′) = A′

m(y(q′))Jm
a (q′) = Kn

mAn(y(q))J
m
a (q′). The resulting expressions are

rather complicated, so we focus here on components especially relevant to the
dimensional reduction.

One finds, for example (with μ, ν, α, σ = 0, 1, 2, 3, and repeated Greek indices
summed from 0 to 3),

A′
ν(q

′) = Aν(q)Q− − 2qαAα(q)nνσq
σ

+ 2A+(q) q
+nνσq

σ − 4A−(q) q
−nνσq

σ,
(40)

while
F ′
μν(q

′) = Q 2
− Fμν − 2Q− q

α (qμFαν + qν Fμα)

+ terms in other components of F.
(41)

5. Remarks on the conformal invariants and dimensional reduction

Note that if q− → 0, then Q− → (q, q), and (38) becomes

q ′μ =
qμ

(q, q)
, q′

+
= q+(q, q) , q′

−
= 0 . (42)

Thus when we move to the light cone in Q(6), identifying the first four components
qμ (μ = 0, 1, 2, 3) with the point x = (xμ) ∈M (4) and identifying (q, q) with xμx

μ,

we recover the formula (4) for conformal inversion in M (4).
The condition q− = 0 is preserved by conformal inversion, as is the equiva-

lence relation (qμ, q+, 0) ∼ (qμ, λq+, 0), λ 
= 0. However, note that the prescription
q+ = 1 for selecting a particular element of each equivalence class is not invariant
under conformal inversion.

Now it is instructive to compare (41) with the corresponding expression (9)
in M (4) for F ′

μν(x
′); the two are formally the same (up to the terms included)

when Q− is taken to (q, q) = qρq
ρ. However, I1(q) = (1/2)F ′

ab(q)F
′ ab(q) defines

an invariant under conformal inversion. In contrast, I1(x) = (1/2)F ′
μν(x)F

′ μν(x)
transforms according to (14) and is not invariant.

The reason for this difference is now clear. The metric tensor g in Q(6), given
by (35), is applied twice to raise the indices a and b in the expression for I1(q). This
introduces an additional factor of 1/(q+)4 as compared with the corresponding

expression for I1(x) in M (4). Under conformal inversion, q′
+

= q+Q−, which
reduces to q+ (q, q) when q− → 0. When we then identify qμ with the coordinates
of Minkowski spacetime, the resulting fourth power of qμq

μ in the denominator
restores the invariance under conformal inversion.

Evidently the dimensional reduction procedure for conformal invariant
nonlinear Maxwell theories in (4 + 2)-dimensional spacetime, with compactified
Minkowski space identified with the projective light cone, must take account of
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the fact that setting q+ = 1 (as a device for handling the projective equivalence)
is inconsistent with the desired conformal symmetry. This is important if we are
to write nonlinear constitutive equations in terms of the (4 + 2)-dimensional in-
variants.
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